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A theory is proposed in this paper to describe the behaviour of a class of turbulent 
shear flows as the Reynolds number approaches infinity. A detailed analysis is 
given for simple representative members of this class, such as fully developed 
channel and pipe flows and two-dimensional turbulent boundary layers. The 
theory considers an underdetermined system of equations and depends critically 
on the idea that these flows consist of two rather different types of regions. The 
method of matched asymptotic expansions is employed together with asymptotic 
hypotheses describing the order of various terms in the equations of mean motion 
and turbulent kinetic energy. As these hypotheses are not closure hypotheses, 
they do not impose any functional relationship between quantities determined 
by the mean velocity field and those determined by the Reynolds stress field. 
The theory leads to asymptotic laws corresponding to the law of the wall, the 
logarithmic law, the velocity defect law, and the law of the wake. 

1. Introduction 
The importance of turbulent shear flows is well recognized in fluid flow prob- 

lems of aeronautical, chemical, civil, and mechanical engineering. Expositions 
of the current state of knowledge can be found in the works of Phillips (1969), 
Mine et al. (1967) and Rotta (1962, pp. 3-219), and the earlier contributions of 
Townsend (1956), Clauser (1956) and Coles (1956) continue to be of great interest. 

Much of what is known about turbulent shear flows stems from experimental 
data. Dimensional and similarity arguments have been employed to obtain 
general empirical correlations. The attempts to integrate this empirical informa- 
tion with the general equations of turbulent flows have not been fully satis- 
factory. The limitations of the attempts originate from the closure hypotheses 
employed to make the set of governing equations a fully determined system. All 
too often, the hypotheses do not describe any fundamental property of the 
mechanics of the flows. In some cases, such as the eddy viscosity hypotheses, 
their soundness and validity have been questioned on the basis of general physical 
considerations. 

The theory proposed in subsequent sections considers the entire region of flow 
and deliberately avoids similarity, dimensional or eddy viscosity arguments. 
Instead, the method of matched asymptotic expansions, whose power has been 
well demonstrated in laminar flows, is applied to turbulent flow problems. 
A novel feature of the theory is that it deals with an underdetermined system of 
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equations. The asymptotic hypotheses employed in the theory describe the 
orders of various terms in the equations of mean motion and of the kinetic energy 
of fluctuating motion. They are considerably milder than the closure hypotheses 
as they do not impose any functional relationship between quantities determined 
by the mean velocity field, such as mean rate of deformation, and quantities 
determined by the Reynolds stress field, such as any component of the stress or 
its spatial derivative. 

The theory leads to asymptotic laws of the same form as the law of the wall, 
the velocity defect law and the logarithmic law. Since these empirical correla- 
tions depend on the parameters of the problem in a limited manner, they are 
sometimes referred to as universal laws. However, the empirical laws are neces- 
sarily approximate and small systematic departures are known in some cases. 
It is therefore preferable to regard them as asymptotic laws in the sense that they 
become exact in the limit as the Reynolds number tends to infinity. Incidently, 
khis interpretation would account for the appearance of constants, such as von 
Karmhn’s constant, which do not depend on the parameters of the problem. 

The crucial idea of the present theory is that there are two layers having rather 
different properties and there are two length scales describing their thickness. 
The thinner layer close to the wall is the one in which viscous stresses remain 
significant in the high Reynolds number limit. The production of turbulent 
kinetic energy from the mean flow and its diffusion due to the fluctuating motion 
remain equally significant or are of the same order in this layer. The outer layer in 
which Reynolds stresses alone remain significant is on the other hand very 
much thicker. This feature of turbulent shear flows has been well recognized 
and is known to be physically sound. 

The treatment of turbulent boundary layers presented here is general enough 
to accommodate arbitrary initial conditions and arbitrary pressure distri- 
butions subject to one condition on the ratio of pressure gradient and skin 
friction which is discussed later. In particular, the theory is not confined to 
equilibrium boundary layers. The value of a theoretical analysis having such 
generality is evident, since there is only a small probability that the boundary 
layer in a given problem of engineering interest is of the equilibrium type. 

The flows analyzed in this paper are simple but representative examples of 
turbulence in the vicinity of solid boundaries. It is expected that the method used 
here, say for a two-dimensional turbulent boundary layer, can be extended to 
more complicated three-dimensional boundary layers. 

It turns out that the expansions used in the paper have a non-uniformity at 
the point of zero skin friction which is quite different from the non-uniform 
behaviour of laminar boundary layers. When (dP,/dz)/(BU3,) ceases to be small, 
errors become significant. (The notation is explained in $4.) The expansions are, 
in particular, not applicable to layers of zero skin friction. 

The main approach of this paper is to extract as much information as possible 
from the underdetermined system of equations of mean motion without resorting 
to any closure hypothesis. This approach is somewhat similar to that of Millikan’s 
well-known argument which established logical relationships among empirical 
correlations without invoking a hypothetical model of turbulence. The value of 
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such a restrained approach lies in the reliability of the information obtained 
since the danger of oversimplifying the phenomena or of introducing extraneous 
features through a hypothetical model is absent. 

2. Fully developed turbulent channel flow 
Preliminaries 

Consider a fully developed turbulent flow between two parallel plane smooth 
stationary walls of infinite extent. The fluid is assumed to be a Newtonian 
fluid of constant density and viscosity in this and subsequent sections. With 
the x axis in the downstream direction in the plane of symmetry, and the y axis 
normal to the plane, the relevant equations of mean motion can be written as 

(2.la) 

(2.lb) 

P ( q  y; R)  and U(y; R)  denote mean pressure and velocity non-dimensionalized 
by the use of h, the half-depth of the channel, as a reference length and U,, the 
mean velocity in the plane of symmetry, as a reference velocity. r(y; R) with 
appropriate suffixes denotes a component of non-dimensionalized Reynolds 
stress. R is the Reynolds number UOh/v. A comma followed by a suffix x or y 
denotes partial differentiation with respect to x or y.  The boundary conditions on 
velocity components and their implications on Reynolds stresses are 

(2.2) - 
TXY,Y  - TZY,Yl/ = 0. y = If: 1:  u = u' = v' == TZY = 

Here u' and v f  denote fluctuating components of velocity. The choice of the re- 
ference velocity requires that 

U(0;  R )  = 1. (2.3) 

(2.4) 

It is readily seen from (2.1) that P x  does not vary with y and is given by 

q x  = - ( 1 / R ) U  .y I y=-1= - u;, 
where V, (R) is the non-dimensionalized friction velicity . 

We now review some of the elementary notions of the method of matched 
asymptotic expansions in the context of expansions of mean velocity. Further 
reference can be made to the works of Cole (1968) and Van Dyke (1964). Mean 
velocity is assumed to have an asymptotic expansion of the form 

(2 * 6 u,) 

the En are functions of the Reynolds number and are called gauge functions. 
They are so arranged that En+l/E?L + 0 as R --f co. The coefficients Un depend on 
the co-ordinate. The partial sum of m terms is called the m term expansion. The 
difference between it and the mean velocity is of a higher order than Em by 
the definition of asymptotic expansion. Substitution of expansions such as ( 2 . 5 ~ )  
into the equations of a given problem leads to equations for terms of various 
orders. When one tries to satisfy the boundary conditions of the problem, no 
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difficulty is encountered in one class of problems which are called regular 
perturbation problems. More frequently, one is not able to satisfy the boundary 
conditions as the expansions such as ( 2 . 5 ~ )  are not uniformly valid and such pro- 
blems are called singular perturbation problems. When the difficulty is associated 
with a non-uniform limiting behaviour in thin layers, the method of matched 
asymptotic expansions is very appropriate. It consists of (a) the use of expansions 
such as (2.5) outside the layers, ( b )  the use of expansions based on stretched co- 
ordinates in the layers, and (c) a systematic matching procedure which essentially 
requires that there is an overlap region where both the expansions are valid. 

We also assume that the Reynolds stress T,, admits an asymptotic expansion 

(2 .5b)  
m 

1 
~z&/; R)  = C rn(R) T,,,(Y) + o ( r d ,  

where rn and Txyn are the nth gauge function and coefficient. 
We will first show that the problem is a singular perturbation problem. The 

condition (2.3) requires that El be of the order of unity and we take El to be one 
without any loss of generality. The hypothesis that the viscous stress terms in 
( 2 . 1 ~ )  are of a higher order than the Reynolds stress terms requires that rl 
be of the order of U$.  By taking Pl to be equal to U $ ,  the equation of the lowest- 

(2.6) 
order terms becomes 

It is readily seen that the solution 

(2.7) 

, + 1 = 0. 

TX,l = B1- Y 9 

where B, is a constant, cannot satisfy the boundary conditions (2.2) as the 
hypothesis and the expansions are not valid near the channel walls. 

To supplement the outer expansions ( 2 4 ,  the following inner expansions are 
assumed near the lower wall 

U(Y; a) = Cen(R)un(q) +o(ern), ( 2 . 8 ~ )  

~ x y ( ~ ;  R) = I: Yn(R)Txyn(V) + o ( Y ~ ) ,  (2.8b) 

where q is the inner variable (y + l)/S, 6 being a function of R. en and 7, are gauge 
functions and u, and T,,, are coefficients. Lower case letters are used for the inner 
expansion and upper case letters are used for the outer expansion. A similar 
expansion for the upper wall layer would be required for the complete treatment 
and it can be readily written down by analogy. 

It is now postulated that the lowest-order viscous stress terms are of the order 
of the Reynolds stress terms in the inner layer, i.e. el/6R is of the order of y l .  
Without any loss of generality, let y1 be given by 

112 

1 

7 l k  

1 

y1 = el/6R. (2.9) 

Whether the lowest-order terms of (2.1) contain U$ depends on the behaviour of 
U i  PR/s1. Instead of making a hypothesis about this point, we consider the mean 
vorticity transport equation obtained from (2.1). The lowest-order terms then 
yield (2.10) 
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and, on integration, 

(2.11) 

where a, and a, are constants and one constant of integration vanishes because 
of the boundary condition (2.2). 

Matching of expansions 
Inner and outer expansions are matched so that both of them are valid in an over- 
lap region. The matching condition suggested by Van Dyke is used here and it can 
be symbolically stated as 

qdxf) = 4oJ.f) (m,n = 1,273, *..), (2.12) 

where 4n(f) and OJf) represent the m term inner and outer expansions off(y ; R). 
The left side of the above condition can be obtained by first writing the n term 
inner expansion off in terms of the outer variable y ,  and then taking the m term 
outer expansion. The right side of the relation is similarly obtained by f%st 
taking the m term outer expansion off written in terms of the inner variable 7 
and then taking the n term inner expansion. 

In  perturbation problems, one often assumes a sequence of gauge functions 
and employs (2.12) to determine constants of integration in inner and outer 
expansions. In  this particular problem, conditions on the gauge functions and 
restrictions on the functional forms of mean velocity and Reynolds stress are 
obtained by repeated application of (2.12) for various values of m and n. 
401(7zu) is seen from (2.7) to be Ui(B,+ 1). (Refer to Van Dyke (1964) for 

details.) The condition (2.12) would then require that T ~ ,  approach a constant as 

(2.13) 
q-+oo. Let 

where b, and b, are constants. For matching, y1 is of the order of U $ .  Without 
loss of generality, let y1 be equal to U;. Then 

sl/6R = U;, (2.14 a)  

b, = B,+ 1. (2.14 b)  

Now directing attention to U ,  we find that -1101( U )  is U,( - l),  the value of U, 

4 ( U )  N ~~[S-~a,(1+y)~+S-~(a,-~,)(1+y)-b,1n((1+y)/~}-b,], (2.15) 

where b, is a constant. 019,( U )  can be independent of y as required for matching 

a2 = 0, a, = b,. (2.16) 

Then @,Yl( U )  N (s,ln 6) b,. (2.17) 

Matching condition (2.12) for m = n = 1 applied to mean velocity requires that 
6, In &is of the order of unity. To obtain results in a form similar to the conventional 

elln6 = -7c++es,+o(~~), (2.18) form, let 

7,y, b, + b2/7 as T -+ a, 

at the lower wall. It is seen from (2.11) and (2.13), that 

onlyif 
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where k and c are constants. Then matching requires that 

b, = - U,( - l ) /k .  (2.19) 

Now O z 4 ( U )  is seen from (2.15) to (2.19) to be 

S,Ua;(U) N -~~[U~(-~) /k] lnS+e, [{U,( -~) /k} ln(1+y)-b~] .  (2.20) 

(2.21) 

O,(U) N U,( - l)+E,[A,ln(l +y)+A,+A,(l +y)-’] as 1 +y -+ 0, (2.22) 

where A,, A ,  and A,  are constants. The matching condition (2.12) for m = 2, 
n = 1 requires that E ,  is of the order oft.,. Let E, and E ,  be equal without any loss 
of generality. Then matching requires that 

A ,  = U,( - 1)/k, A = - cU,( - 1)  - b,. (2.23) 

One more relation is required between the two remaining gauge functions 
S and el. So the complete equation of kinetic energy of fluctuating motion is 
now considered. The terms describing the transfer from the mean motion, and 
the diffusion associated with fluctuations are -UlD)q, and & [ V ’ ( U ’ ~  + v’, + w‘,)] ,’y. 

The inner layer is by hypothesis characterized by a significant transfer of energy 
from the mean flow and an equally significant diffusive transfer through the 
fluctuating motion. If the fluctuating velocity components are of the order of 
yk, the lowest-order terms in the inner expansions of the above terms are of the 
orders of ylE1/S and y$/S. Hence, y1 is of the order of €21. Without any loss of gener- 
ality, let y1 be equal to €21. Then it is seen from (2.9) and (2.14), that 

S = l/s,R = 1/U*R. (2.24) 

The indirect dissipation rate in the equation of kinetic energy has terms like 
R-1 U:,U:, and hence it is of the order of yl/SzR if the length scale of the fluctuat- 
ing motion in the y direction is taken as S. The alternative hypothesis that the 
indirect dissipation rate is of the order of the transfer from the mean motion 
leads to the conclusion that E ,  is of the order of 1/62?. It is seen from (2.24) that 
this hypothesis serves the purpose equally well. 

The values of the constants a, and B, turn out to be unity and zero, as can be 
seenfrom (2.4), (2.11), and (2.24), and from (2.14b) and (2.16). 

The viscous term in (2.la) is of the order of 1/R in the outer expansion if U,,,, 
is not zero. But the viscous term was assumed to be of a higher order than U:, 
and (2.18) and (2.24) imply that U: decreases considerably slower than 1/R. 
Hence U, ,yy must be zero. The outer flow is then symmetrical only if U, is indepen- 
dent of y. Hence U,(y) is equal to one. 

Thus the outer expansions of mean velocity and Reynolds stress are given by 

U = I +~*U,(y)+o(U*),  (2 .25~)  

U -  l+U,[(l /k)ln(l+y)+A,] as y +  - 1 .  (2.25b) 

7,, = - Uz,y + o( U $ ) ,  (2.25~) 

TXY N U :  as y j - 1 .  (2.25d) 

On the other hand, 6,( U )  is 

@,(U)  = U,(Y) + E m  W Y )  
or, after taking a suitable expansion of U,, 
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The inner expansions are 

(2.26 a)  

U N  U*[(l/k)lnq+A,+c] as q+m, (2.263) 

733 = G.Tzl/l(Y) + w;), ( 2 . 2 6 ~ )  

T~~ N U",1- l / k q ]  as r] 3 a. (2.2 6 d )  

The relation (2 .18)  can now be written in a more familiar form by using (2.24),  

I/& = (l/k) In (U, R) + c + o( 1). (2.27) 

The above solutions contain the undetermined functions U, and T~~~ and the 
undetermined constants k, A ,  and c as the system being analyzed is under- 
determined. 

Relations ( 2 . 2 5 ~ )  and ( 2 . 2 6 ~ )  are the well-known velocity defect law and the 
law of thewall, while (2.25b) and (2 .263)  are thelogarithmic laws. Relation (2 .27)  
is the well-known law for skin friction expressed in terms of the mean velocity 
at the plane of symmetry. 

There are many ways of constructing uniformly valid expansions from the 
inner and the outer expansions. One such set of uniformly valid expansions is the 
following : 

U = u* [7-/)&')dll'+ U,(Y)- (1lk)lnP +Y) -A,]  +o(U*), 

7zy = U2,[72,1(11)-(1+~)1+0(U2*). (2.28 b )  

Relation ( 2 . 2 8 ~ )  can be seen to be one form of the law of the wake. 
It follows from (2.11) and (2.16) that 

~ 1 , ~ + 7 z y 1  = 1. (2 .29)  

The above relation states that the total shear stress in the inner layer is constant 
to the lowest order. The reason for the constancy of total shear stress in the 
presence of pressure gradient is that the pressure gradient, being of the order of 
UZ,, is of a higher order than the viscous stress terms in (2.1 a),  which are of the 
order of U i R .  The asymptotic conclusion (2 .29)  is a counterpart of the well- 
known constant total shear stress hypothesis. 

Since the cross-sectional average of mean velocity is sometimes used in the 
skin friction law, it can be estimated by selecting ql in the overlap region and 
averaging ( 2 . 2 8 ~ )  as follows: 

or u,, = 1+c1U*+o(U*), (2.30) 

where c1 is a constant. The skin friction law (2 .27)  can now be written as 

&v,) = (l/k) ln{R,, J(ac,)>+c+C1+0(1), (2 .31)  

where R,, is the Reynolds number based on average velocity and the half-depth 
and C, is the skin friction coefficient 2( U;/ U&). 

27 FLM 42 
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3. Fully developed turbulent pipe flow 
The problem of a fully developed turbulent pipe flow is substantially similar to 

the channel flow problem. A few details are given below to show some of the minor 
differences. 

With 2, y, z as axial, radial and tangential co-ordinates, the fully developed 
parallel mean flow is governed by 

qz - ( l /R)D(yg) -~Txv  = 0, (3 .1~)  

q g  - D@,J + 7 Z J Y  = 0, (3.lb) 
where w, = (Yf),,/Y. (3 .1~)  

The notation used here is chosen to exploit similarities with the previous problem. 
The reference length and velocity used for non-dimensionalization are the radius 
of the pipe and the mean velocity at  the axis. Equations (2.2) and (2.3) hold with 
the modification that the boundary condition (2.2) holds only at y = + 1. The 
vorticity transport equation is simply 

( 1 / m  [D(Y,)I,,+ PX,),, = 0. 
The outer expansions (2.5) with the same hypothesis about the outer layer and 

also the choice of the gauge function El gives the lowest-order equation for 

2 + DTx,l = 0 (3.3) (3.lu)as 

and, on integration, Tx,l = - Y +B,/Y. (3.4) 

(3.2) 

The constant Bl is taken to be zero for finite Reynolds stress at the axis. 
The inner variable 7 is given by 

7 = (1 - y)/& 8 = W), (3.5) 
which corresponds to the expansion for the upper wall in the channel flow 
problem. The inner expansions (2.8) with the same hypothesis about the inner 
layer and the choice of the gauge function (2.9) lead to the lowest-order equation 
(2.10). The differential operator D given by ( 3 . 1 ~ )  does not introduce any modi- 
fications in the lowest-order terms. 

The remaining arguments and conclusions are the same as in the previous 
section except for two changes. The sign difference between the definition of the 
inner variable in the previous problem and (3.5) leads to obvious modifications 
in signs, and the integrands in (2.30) are multiplied by 2y. 

4. Two-dimensional turbulent boundary layers 
We now consider the turbulent boundary layer past a flat smooth surface 

with a given flow condition at one section (mean velocity and Reynolds stress), 
and given mean velocity or equivalent mean pressure outside the boundary 
layer. The mean quantities are assumed to be independent of the spanwise co- 
ordinate x .  The complete equations of mean motion are 
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where a reference length L and a reference velocity U, are used for non-dimen- 
sionalization. R is U , / v .  Other conditions, which anticipate that the equations 
for the leading terms are parabolic, are 

y = o ,  x>,x,:  u =  V = u ' = v ' = w ' = O ,  ( 4 . 2 ~ )  

x = x,, y > 0: u = U(y) .  (4.2b) 

( 4 . 2 ~ )  

Inviscid limit : 

x > xo, y --f 0 :  u 3 Um(X), v --f 0, P -+ Pa(.). 
The mean vorticity transport equation is given by 

U(V2Y) .x + V(V2Y), y = (1/R) v4y + Txx,xy + Txv , yy - rxy, xx - r y y  , xt!. 

(4.3) 

Expansion for the outer layer 
The existence of the inner and outer layers is stipulated as in the channel and the 
pipe flow and the outer expansion (not for the region outside the boundary layer 
but for the outer layer) is taken in the form 

Y = y/A, A = A(R), ( 4 . 4 4  

(4.46) 

(4.4c) 

( 4 . 4 4  

Y(.,?/; R) = AEl(R)Y1(x, Y)+AE2(R)Y2(x, Y)+o(AE,), 

U(x, Y ;  R) = ElYL P + E,Y,, P + o(E,), 
r(2, y; R) = Fl(R) T&, Y )  + O r J .  

Here En, rn. are gauge functions andY,, Tn are coefficients. 
An additional assumption required for turbulent boundary layers is that all 

the components of Reynolds stress are of the same order. Were it not so, the 
turbulence would become extremely anisotropic in the high Reynolds number 
limit, and certainly that is neither plausible nor in conformity with the experi- 
mental data. 

The expansions of the terms of the mean vorticity equation are recorded for 
convenience 

U(V2W,X+ V 2 Y ) , ,  = ( E W )  ~ ~ , , P ~ l . x P P - ~ l , x ~ l , P I P I +  (ElE,/A) 
x IY-1, P Y2,xPI + y 2 ,  PYl ,xP I -y1 , x y 2 ,  PP Y - Yf, ,x%, PPPl + o(E1 E2/A)? 

( 4 . 5 4  
(1/WV4Y = (E1/A3R)Y1,rypp +o(E1/A3x), (4.5b) 

~ x x , x y + ~ x y , ~ ~ - ~ x y , x x - ~ ~ ~ , x ~  = (rl/A2)Txyl,IP+O(rl/A2). (4.5c) 

It is postulated that the dominant character of the outer layer is inertial and 
that the Reynolds terms contribute not to the lowest but to the second lowest- 
order terms and that the viscosity terms contribute to still higher-order terms. 
In other words, 

I',/AE,E, 3 non-zero constant, l/A2E2R -+ 0 as R + 00. (4.6) 

Although this assumption is not identical to that for the channel flow, it still 
recognizes that the Reynolds stress terms are more dominant than the viscosity 
terms. 

27-2 
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The equations for the lowest and the second lowest order are then 

%JLPfT - - ~ l , X ~ l . Y P P  = 0, ( 4 . 7 ~ )  

~l,PY2,XYP + ~ 2 , Y ~ l , X P P  - % , x ~ 2 , P P Y  -Y2,xYl,PPP = Trnl,PP, (4.7b) 

where Pl has been taken to be equal to AE,E, without any loss of generality. 
Integration of ( 4 . 7 ~ )  gives 

Y l , P Y l , X P  --%,X~l,PY = H l W  (4.8) 

(4.9) 

U(z ,  Y) + Uw(x) as Y -+ co. (4.10) 

At the outer edge ( Y + co), the inviscid behaviour is given by 

urn u w  ,5 = - P W  ,Z  

and matching with the inviscid flow requires that 

Hence H ,  is equal to - Pm,x. 

solution of ( 4 . 7 ~ )  subject to (4.10) is 
Now El has to be of the order of unity to satisfy (4.10). Let El be unity. A 

Y l = U w Y ,  V " A U W Y ,  (4.11 a) 

U N Um(x), V N -AUm,,Y. (4.11 b) 

As Y approaches zero, V approaches zero but U does not. This suggests a non- 
uniformity. 

Any function of x alone can be added to Y, given by (4.11) and Yl will con- 
tinue to be a solution of (4.11). However, such eigensohtions that give rise to 
normal velocity V at the inner and outer edge of the layer are thought to be 
irrelevant to the problem. Substitution of (4.11) in (4.7b) yields 

Uw~2,xYP- YUW,X~2,P,, = Tx,l,Y,. (4.12) 
Integration yields, 

UW~2,,,+UW x(Y2,Y - YY2,Z-Y) = TX,l,P+H,(x). (4.13) 

are expected to approach zero. So As Y +a, Y2,xp, Y,,,, YYP2,pP and Txyl, 
H ,  may be taken to be zero. Further integration yields 

u~y2,x+uW,z~2y2- m2,Yl = Txgl+ H3(x). (4.14) 

Here H3 may not be zero as Y2 may not approach zero as Y approaches infinity. 
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A lower case letter in this notation has a meaning similar to the corresponding 
upper case letter used in the outer expansion. Expressions similar to (4.5) can 
be obtained by replacing A, En, I?,, Y, and T, by 6, e%, y,, 11., and r, respectively. 

It is now stipulated, as in the previous problems, that the Reynolds stress 
terms are of the order of the viscosity terms, and that the inertia terms are of a 
higher order. That is, y16R/el -+ a non-zero constant, and e ,PR -+ 0. Let y1 be 
equal to el/SR. Then the lowest-order terms in (4.3) give 

@l,qqqv +-~XYl*qq = O.  

Integration and the use of the boundary conditions give 

(4.16) 

(4.17) 

where fl andf, are unspecified functions of x. 

Matching of the inner and the outer solutions 

Consider the matching condition (2.12) for m = n = 1 applied to Reynolds 
stress rw. Let TXYl(x, 0) be different from zero. Then 401(rxy) is l?lTxYl(x, 0 ) .  
Hence y1 has to be of the order of rl and rxYl(x, 7) approaches a limiting value as 
7 -+ 00. Let y1 be equal to rl and 

TZYl(",  7) g 1 W  + g,(x)/7 as 7 -+ (4.18) 

where g1 and g, are unspecified functions of x. Then from (2.12) 

Tx,1(x, 0) = g 1 ( 4 .  

Xl(U) is given from (4.17) and (4.18) as 

(4.19) 

4 U )  - mw)-2 3fi y2  + (2.A - S l )  y 
-g21n{Y/(6/A)}-h], 7 --f 00. (4.20) 

where his a function of x. The matching condition (2.12) applied to meanvelocity 
with m = n = 1 gives 

f 2  = 0, 2fl = 91 (4.21) 

and el In (&/A) has to be of the order of unity. In order to obtain results in a con- 
venient form, let 

el In (A/6) = k( U,, - cel) + o(el). (4.22) 

Here U,, is the value of Urn at x = x,, and k and c are constants. Then the condition 
(2.12) yields 

(4.23) 
Now O,4(  U )  is given by 

029du) - E ~ ( U ~ / U ~ ~ )  (l/k)In(A/S)+€,[(U,/U,,k)ln Y - h l .  (4.24) 

The matching condition (2.12) with m = 2, n = 1 requires that E2 be of the order 

(4.25) 
of el and 

Y.',,p - P!(x)ln Y + 6 ( x ) + P 3 ( x )  Y as Y + 0. 

Here Pn are unspecified functions of z. Let B, be equal to el. Then matching 
requires that U, +el In (6/A) Pl = o( 1) (4.26) 
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or Fl can be taken to be Um/k in view of (4.22), and 

F2+(Um/Umo)c = -h.  (4.27) 

As before, the complete equation of the kinetic energy of the fluctuating motion 
is now considered for the inner layer. The transport due to convection associated 
with mean motion is 

*[ U ( O +  v’2+ W’Z) ,x + V(U’2+ 0 ’ 2 +  W f 2 ) , J  

and is of the order of el yl. The transport associated with the fluctuating motion 
is given by 

*[ - (U’(U’2 + W’Z+ w’2)},z - {v’(u’2+ v‘2 + w‘2)},,] 

and is of the order of yfl;Sif all fluctuating velocities are assumed to be of the order 
of yt. The production of the kinetic energy from the mean motion is given by 

and is of the order of y1 e,/S. The transfer of the kinetic energy is again assumed 
to be as significant as its production in the inner layer. Since the convection 
associated with mean motion is definitely of a higher order, ylel/S is assumed to 
be of the order of yf/S. Let y1 be equal to €21. Then 

E, = A = l/SR. (4.28) 

The non-dimensionalized friction velocity U, (x) is given by 

V2,(4 = (1/R) Y , l , = O  - [2%/JRIf,(4 2W1(4.  (4.29) 

Hence if U*(xo) is not zero, we may take 

€1 = U*(x,) = U*o, (4.30) 

so that 2f1(x0) is unity. Note further that from (4.1), (4.2) and (4.21) 

pm,x = (I/R) ull,l,=o = (e1/s2B) (6f2)+o(e,/S2R) = o ( U i 0 R ) .  (4.31) 

Since U,, decreases extremely slowly, Ugo R approaches infinity and the condition 
(4.21) on fz due to matching is therefore not very stringent. This aspect of the 
theory is discussed in a later section. 

The outer expansions can be written as 

U = U,(x>+U*o~2, , (x ,  Y)+o(U*o), (4.3%) 

U N U,(x)+U,,[(U,/Um0) (l/lc)ln Y+F,(z)] as Y + 0, (4.323) 

TXY - - u:O%yl(z7 y ) + 0 ( U : O ) 7  (4.32 c) 

T ~ ,  - U2,,[2f1(z)] as Y --f 0. (4.32d) 

The inner expansions are 

u = U*O@l,& ‘I) +o(U*o), (4.33 a)  

u N U*o[(um/ucoo) f ~ / ~ ) l n ’ ~ + ~ ~ ( ~ ) + ( ~ m I U , o ) ~ l  as ’I --z “3, (4-333) 
(4.33 c) rz, = U:o~Z,lfx, ‘I) + W : o ) ,  

7x, U2,0[2f1(4 - ~ m / ( U m o ~ 7 ) 1  as ‘I -+ 00. (4.33 d )  
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Relations ( 4 . 3 2 ~ )  and ( 4 . 3 3 ~ )  correspond to the velocity defect law and the 
law of the wall. Equations (4.323) and (4.33b) correspond to the logarithmic law 
in the overlap region. Further discussion on these relations is given in a later 
section. 

Y, is connected with TxVl by relation (4.14) and y?l is written in terms of rml 
in (4.17). Thusrelations (4.32a, c )  and ( 4 . 3 3 ~ ~  G) contain two undetermined func- 
tions Y2(x, Y )  and rml(x,q). The logarithmic laws also contain an unknown 
function of 2 and two constants. This feature is a consequence of the under- 
determined nature of the system of equations. Note further that the skin friction 
coefficient C,, = 2U2,,/U~o is given from (4.22) by 

1/(2/CfO) = (I/k) ln((U,oAR)~(GfI2))+c+o(l). (4.34) 

Note that UwoAR is the Reynolds number based on external velocity at xo 
and the boundary-layer thickness A. The relation with the usual skin friction 
law will also be discussed later. 

Uniformly valid expansions can be written as 

= u ~ 0 ~ y ? ~ , ~ ~ ~ 7 ~ ~ ~ y 2 , P ~ z ~ ~ ~ ~ ~ u ~ / u ~ 0 ~  ('/')''' y -p21+0(u*0)7  (4'35a) 
TXV - - u ~ O I T z , l ( x ,  7) + TxVl(z7 ') - 2.f1(x)1 + O('2*0)' (4.35 b) 

Other results 

Often it is more convenient to express mean velocity and shear stress in terms 
of local friction velocity U, and local boundary-layer thickness A'@; R). Relations 
(4.32) and (4.33) accommodate such a change provided a certain vicinity of the 
separation point is avoided. Note also that when U, (x; R) is used in the place of a 
gauge function, it hides the parameter perturbation character of the problem. 
Its advantage, however, lies in a rapid indication of any tendency towards a 
similar profiles. Equations ( 4 . 3 2 ~ )  and ( 4 . 3 3 ~ )  now appear as 

u(x, Y ;  R) = um(x) - u*(x; R) P(x,  Y') + o(U*o), (4.36 a)  
U ( x ,  y ;  R) = U*(x; R) f ( z ,  Y) + 4 U2,O). (4.36 b) 

Here F(z ,  Y ' )  and f(x, Y')  are given by ( U * o / U * ) ( - Y 2 , F )  and (U*o/U*)y?l,7 
A'(x; R) is conveniently defmed by 

A'(x; R) = IOm (U, - U)/U, d y  = S*U,/U,, ( 4 . 3 6 ~ )  

where S* is the displacement thickness. The new outer variable is given by 

As a result, 

y' = y / E .  

J0, Pfx, Y ' ) d y '  = 1. 

(4.36d) 

(4.36e) 

With the expansion (4.326) similarly rewritten, (4.1 3) becomes after some simpli- 
fication 

(A'/U*) U m  , x  [ - F + Y'{ p'] - ( U m  A'/U*) [T, - ( Y'A 1 X'A') 4 p,] 
- (Uw/U:) A'FU*,, = T&,l,yt. (4.37) 

With the notation w = u*pm (4.38 a)  
and I T ( X ;  R) = S*Px/U$ = -ArUm,x/U*, (4.38b) 
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the relation (4.37) can be written as 

n[2P- Y’+] + [6Tx/w2- (6*/wS)w,,]Y‘Ti:, 

- (6* /w2)  .Fx- (6* /w3)  o,,P = Z’.&I,i:,,, (4 .38~)  

which corresponds to the usual equation (see Rotta 1962, for example (15.8)) 
to the lowest order. The conventional equations have terms of two orders 
together since a limiting argument is not used. 

Two notions of similarity of the mean velocity defect profiles can now be con- 
sidered. If (U, - U)/U,  depends only on y/A’ (x), the profile shapes are exactly 
similar and, a8 Clauser (1956) has shown, such exact similarity is unlikely to occur. 
An examination of his arguments shows that the slight differences found by him 
are due to higher-order terms. The weaker notion of similarity would require 
F to depend only on y/A‘. This notion requires similarity only to the order of U, 
and is more suitable for turbulent boundary layers. 

A necessary condition for weak similarity is obtained from (4.38c), namely, 
n, Sqx/w2, and (S* /w3)  w , z  are independent of x. It is then readily seen that 

w = A(x-x,)?z,  a* = B(x-x1)2?z+1, (4.39) 

with some constants A ,  B, x1 and n. Also T&,, has to be independent of x. Thus 
according to the weak notion of similarity, the expansions of mean velocity 
defect and Reynolds stress up to the orders of U, and U i  depend on only y lh ’ .  

A comparison of the coefficient of the logarithmic term in the expansion for 
Y + 0 of (4.36a) with that of (4.32b), yields a condition stronger than (4.39) 
namely that w is independent of 2. Consequently, the logarithmic laws (4.32b) and 
(4.33b) reduce to the familiar forms, 

U N U,(x) + U,[(l/k) In Y’+A,]  as Y’ + 0, ( 4 . 4 0 ~ ~ )  

U N U,(x)[(l/k)lnq’+A,+c] as f + ~ ,  (4.40b) 

where A ,  is a constant. The skin friction law then becomes 

&w,) = (l/k:)In[(U,A’R)2/(Qf/2)1 +c+o( l ) .  ( 4 . 4 0 ~ )  

For the purpose of approximate calculations, ( 4 . 3 8 ~ )  can be integrated after 
multiplying by a weighting function. Consider the integral equation for this 
range Y’ = 0, Y’ -+ co when the weighting function is unity. From the behaviour 
of U in the overlap region, 

~ ~ - A : , / ~ - ( A ’ / o J ) w , ,  = - 1. (4.41) 

This equation also corresponds to the usual equation (Rotta 1962, (14.6)) to 
the lowest order. 

The hypotheses 5 .  Discussion 

The physical content of the major hypotheses can be described as follows. The 
balance of mean vorticity in the outer layer is dominated by convection associated 
with the mean motion. Reynolds stress terms influence the next order and viscous 
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diffusion enters only in still higher-order terms. This region has a dominant 
historical character. 

Viscous diffusion is as significant as Reynolds stress terms in the mean vor- 
ticity balance of the inner layer. However, the convection of mean vorticity 
associated with mean motion is of a higher order. Also, the production of kinetic 
energy of the fluctuating motion from the mean motion and its transfer associated 
with the fluctuating motion are equally important. Alternately, the production 
terms can be assumed to be of the order of the indirect dissipation terms. It is 
now widely recognized that the region close to the wall has these important 
properties. 

The hypothesis that the Reynolds stress components or the fluctuating velocity 
components are of the same order in the inner or the outer layer, is very plausible. 
Otherwise very striking anisotropy would be observed. The root-mean-square 
values of the fluctuating velocity components and other data indicate that there 
is only a limited amount of anisotropy in the inner layer and considerably less 
in the outer layer. 

For the pipe and the channel flows, convection of vorticity associated with 
mean motion happens to be absent. The above statements can then be readily 
modified. 

These hypotheses are rather mild and describe properties which are known to 
be broadly supported by experimental data. 

The method 
The method of matched asymptotic expansions has been extensively used in 
diverse laminar flow problems and also in other problems of applied mathe- 
matics (Cole 1968; Van Dyke 1964). It provides a scheme for constructing 
uniformly valid solutions. It is based on the essential features of the classical 
boundary-layer arguments. The common order-of-magnitude arguments provide 
an alternative and conceptually simpler way of obtaining lowest-order equations, 
particularly in simple problems. However, numerous controversies have arisen 
from the use of such arguments. The method of matched asymptotic expansions 
seems to be considerably more reliable and mathematically more satisfactory. 

The results 

The form of the various asymptotic relations corresponds broadly to the various 
empirical laws. The most important difference is the asymptotic nature. The 
empirical laws have not been interpreted as asymptotic laws although some small 
systematic departures have been noted. For example, Rotta (1962, p. 101) finds 
a higher-order effect in the velocity defect law. Similarly, the local skin friction 
0s. local Reynolds number curve based on the data of Schultz-Grunow (1956) 
and Smith &Walker (1959) indicate a slight departure from a strictly logarithmic 
behaviour (Rotta 1962, p. 104). 

The most specific result is the logarithmic laws containing two undetermined 
constants (4.34) and (4.40). Millikan’s (1938) argument has shown that they are 
a consequence of the overlap of the two layers. The preceding arguments have 
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shown that the physical nature of the layers can be postulatedin broad terms and 
that the asymptotic form of velocity defect law and the law of the wall can be 
obtained in contrast to the exact laws assumed in Millikan’s argument. Also, 
the results are not confined to similar profiles. 

The role of pressure gradient 
The total shear stress is constant to the order of l-7: in the inner layer as can be 
seen from (2.29)) (4.17) and (4.21). This asymptotic conclusion is a counterpart 
of the well-known hypothesis of constant total shear stress. To see how pressure 
gradient gives rise to higher-order terms, consider the co-ordinate expansion of 
U ( s ,  y; R) near the wall. 

U(S,Y;  R )  = B U ~ ~ + Q ~ , , , ~ Y ~ + O ( Y ~ )  

( 5 . 1 ~ )  

On the other hand, the inner expansion gives 

U ( X ,  y; R) = u* 7’ + o ( p ) .  (5.lb) 

Clearly, the effect of pressure gradient is governed by the term P,, ,J(RU$). For 
a given pressure distribution and a given location other than a point of zero 
friction, this term approaches zero as Reynolds number goes toinfinity. In a 
separating boundary layer, however, this term does not approach zero uniformly, 
since at a given Reynolds number, however large it may be, there are points 
ahead of the separation point where the term (P,,,/U$R) is large. As a result, 
the expansion used for the inner layer will be invalid near the separation point. 
In  particular, the mean velocity profile in the overlap region may be expected to 
show marked deviation from the logarithmic law. Clearly, this non-uniformity 
is distinct from the non-uniform behaviour expected in laminar boundary layers 
(Goldstein 1948; Stewartson 1958; Kaplun 1967). 

In channel or pipe flow, q,(RU3,) is equal to l/U* R and hence the effect of 
pressure gradient is of a higher order in the inner layer. 

The author is grateful to Professor Roddam Narasimha for many stimulating 
discussions during the first stage of development of the ideas contained in this 
paper. The suggestions of Professors M. R. Head and T. Vrebalovich are acknow- 
ledged with thanks. 
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